3.1.81 \(\int \frac {x^3}{(a+b \log (c x^n))^3} \, dx\) [81]

3.1.81.1 Optimal result
3.1.81.2 Mathematica [A] (verified)
3.1.81.3 Rubi [A] (verified)
3.1.81.4 Maple [C] (warning: unable to verify)
3.1.81.5 Fricas [B] (verification not implemented)
3.1.81.6 Sympy [F]
3.1.81.7 Maxima [F]
3.1.81.8 Giac [B] (verification not implemented)
3.1.81.9 Mupad [F(-1)]

3.1.81.1 Optimal result

Integrand size = 16, antiderivative size = 101 \[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {8 e^{-\frac {4 a}{b n}} x^4 \left (c x^n\right )^{-4/n} \operatorname {ExpIntegralEi}\left (\frac {4 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )}{b^3 n^3}-\frac {x^4}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}-\frac {2 x^4}{b^2 n^2 \left (a+b \log \left (c x^n\right )\right )} \]

output
8*x^4*Ei(4*(a+b*ln(c*x^n))/b/n)/b^3/exp(4*a/b/n)/n^3/((c*x^n)^(4/n))-1/2*x 
^4/b/n/(a+b*ln(c*x^n))^2-2*x^4/b^2/n^2/(a+b*ln(c*x^n))
 
3.1.81.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.88 \[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {x^4 \left (16 e^{-\frac {4 a}{b n}} \left (c x^n\right )^{-4/n} \operatorname {ExpIntegralEi}\left (\frac {4 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )-\frac {b n \left (4 a+b n+4 b \log \left (c x^n\right )\right )}{\left (a+b \log \left (c x^n\right )\right )^2}\right )}{2 b^3 n^3} \]

input
Integrate[x^3/(a + b*Log[c*x^n])^3,x]
 
output
(x^4*((16*ExpIntegralEi[(4*(a + b*Log[c*x^n]))/(b*n)])/(E^((4*a)/(b*n))*(c 
*x^n)^(4/n)) - (b*n*(4*a + b*n + 4*b*Log[c*x^n]))/(a + b*Log[c*x^n])^2))/( 
2*b^3*n^3)
 
3.1.81.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.09, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2743, 2743, 2747, 2609}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx\)

\(\Big \downarrow \) 2743

\(\displaystyle \frac {2 \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^2}dx}{b n}-\frac {x^4}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2743

\(\displaystyle \frac {2 \left (\frac {4 \int \frac {x^3}{a+b \log \left (c x^n\right )}dx}{b n}-\frac {x^4}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}-\frac {x^4}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2747

\(\displaystyle \frac {2 \left (\frac {4 x^4 \left (c x^n\right )^{-4/n} \int \frac {\left (c x^n\right )^{4/n}}{a+b \log \left (c x^n\right )}d\log \left (c x^n\right )}{b n^2}-\frac {x^4}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}-\frac {x^4}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2609

\(\displaystyle \frac {2 \left (\frac {4 x^4 e^{-\frac {4 a}{b n}} \left (c x^n\right )^{-4/n} \operatorname {ExpIntegralEi}\left (\frac {4 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )}{b^2 n^2}-\frac {x^4}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}-\frac {x^4}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

input
Int[x^3/(a + b*Log[c*x^n])^3,x]
 
output
-1/2*x^4/(b*n*(a + b*Log[c*x^n])^2) + (2*((4*x^4*ExpIntegralEi[(4*(a + b*L 
og[c*x^n]))/(b*n)])/(b^2*E^((4*a)/(b*n))*n^2*(c*x^n)^(4/n)) - x^4/(b*n*(a 
+ b*Log[c*x^n]))))/(b*n)
 

3.1.81.3.1 Defintions of rubi rules used

rule 2609
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Si 
mp[(F^(g*(e - c*(f/d)))/d)*ExpIntegralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; F 
reeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2743
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - 
Simp[(m + 1)/(b*n*(p + 1))   Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x], x] 
 /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
 

rule 2747
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[(d*x)^(m + 1)/(d*n*(c*x^n)^((m + 1)/n))   Subst[Int[E^(((m + 1)/n 
)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
 
3.1.81.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.44 (sec) , antiderivative size = 473, normalized size of antiderivative = 4.68

method result size
risch \(-\frac {2 i \left (i x^{4} b n +2 \pi b \,x^{4} \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )-2 \pi b \,x^{4} \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-2 \pi b \,x^{4} \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+2 \pi b \,x^{4} \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+4 i \ln \left (c \right ) b \,x^{4}+4 i b \,x^{4} \ln \left (x^{n}\right )+4 i a \,x^{4}\right )}{{\left (b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )-b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 i b \ln \left (c \right )+2 i b \ln \left (x^{n}\right )+2 i a \right )}^{2} b^{2} n^{2}}-\frac {8 x^{4} c^{-\frac {4}{n}} \left (x^{n}\right )^{-\frac {4}{n}} {\mathrm e}^{-\frac {2 \left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 a \right )}{b n}} \operatorname {Ei}_{1}\left (-4 \ln \left (x \right )+\frac {2 i \left (b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )-b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 i b \ln \left (c \right )+2 i b \left (\ln \left (x^{n}\right )-n \ln \left (x \right )\right )+2 i a \right )}{b n}\right )}{b^{3} n^{3}}\) \(473\)

input
int(x^3/(a+b*ln(c*x^n))^3,x,method=_RETURNVERBOSE)
 
output
-2*I*(I*x^4*b*n+2*Pi*b*x^4*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-2*Pi*b*x^4* 
csgn(I*c)*csgn(I*c*x^n)^2-2*Pi*b*x^4*csgn(I*x^n)*csgn(I*c*x^n)^2+2*Pi*b*x^ 
4*csgn(I*c*x^n)^3+4*I*ln(c)*b*x^4+4*I*b*x^4*ln(x^n)+4*I*a*x^4)/(b*Pi*csgn( 
I*c)*csgn(I*x^n)*csgn(I*c*x^n)-b*Pi*csgn(I*c)*csgn(I*c*x^n)^2-b*Pi*csgn(I* 
x^n)*csgn(I*c*x^n)^2+b*Pi*csgn(I*c*x^n)^3+2*I*b*ln(c)+2*I*b*ln(x^n)+2*I*a) 
^2/b^2/n^2-8/b^3/n^3*x^4*c^(-4/n)*(x^n)^(-4/n)*exp(-2*(-I*b*Pi*csgn(I*c)*c 
sgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^ 
n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*a)/b/n)*Ei(1,-4*ln(x)+2*I*(b*P 
i*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)-b*Pi*csgn(I*c)*csgn(I*c*x^n)^2-b*Pi* 
csgn(I*x^n)*csgn(I*c*x^n)^2+b*Pi*csgn(I*c*x^n)^3+2*I*b*ln(c)+2*I*b*(ln(x^n 
)-n*ln(x))+2*I*a)/b/n)
 
3.1.81.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 211 vs. \(2 (100) = 200\).

Time = 0.31 (sec) , antiderivative size = 211, normalized size of antiderivative = 2.09 \[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=-\frac {{\left ({\left (4 \, b^{2} n^{2} x^{4} \log \left (x\right ) + 4 \, b^{2} n x^{4} \log \left (c\right ) + {\left (b^{2} n^{2} + 4 \, a b n\right )} x^{4}\right )} e^{\left (\frac {4 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )} - 16 \, {\left (b^{2} n^{2} \log \left (x\right )^{2} + b^{2} \log \left (c\right )^{2} + 2 \, a b \log \left (c\right ) + a^{2} + 2 \, {\left (b^{2} n \log \left (c\right ) + a b n\right )} \log \left (x\right )\right )} \operatorname {log\_integral}\left (x^{4} e^{\left (\frac {4 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}\right )\right )} e^{\left (-\frac {4 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}}{2 \, {\left (b^{5} n^{5} \log \left (x\right )^{2} + b^{5} n^{3} \log \left (c\right )^{2} + 2 \, a b^{4} n^{3} \log \left (c\right ) + a^{2} b^{3} n^{3} + 2 \, {\left (b^{5} n^{4} \log \left (c\right ) + a b^{4} n^{4}\right )} \log \left (x\right )\right )}} \]

input
integrate(x^3/(a+b*log(c*x^n))^3,x, algorithm="fricas")
 
output
-1/2*((4*b^2*n^2*x^4*log(x) + 4*b^2*n*x^4*log(c) + (b^2*n^2 + 4*a*b*n)*x^4 
)*e^(4*(b*log(c) + a)/(b*n)) - 16*(b^2*n^2*log(x)^2 + b^2*log(c)^2 + 2*a*b 
*log(c) + a^2 + 2*(b^2*n*log(c) + a*b*n)*log(x))*log_integral(x^4*e^(4*(b* 
log(c) + a)/(b*n))))*e^(-4*(b*log(c) + a)/(b*n))/(b^5*n^5*log(x)^2 + b^5*n 
^3*log(c)^2 + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3 + 2*(b^5*n^4*log(c) + a*b^4 
*n^4)*log(x))
 
3.1.81.6 Sympy [F]

\[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {x^{3}}{\left (a + b \log {\left (c x^{n} \right )}\right )^{3}}\, dx \]

input
integrate(x**3/(a+b*ln(c*x**n))**3,x)
 
output
Integral(x**3/(a + b*log(c*x**n))**3, x)
 
3.1.81.7 Maxima [F]

\[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int { \frac {x^{3}}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{3}} \,d x } \]

input
integrate(x^3/(a+b*log(c*x^n))^3,x, algorithm="maxima")
 
output
-1/2*(4*b*x^4*log(x^n) + (b*(n + 4*log(c)) + 4*a)*x^4)/(b^4*n^2*log(c)^2 + 
 b^4*n^2*log(x^n)^2 + 2*a*b^3*n^2*log(c) + a^2*b^2*n^2 + 2*(b^4*n^2*log(c) 
 + a*b^3*n^2)*log(x^n)) + 8*integrate(x^3/(b^3*n^2*log(c) + b^3*n^2*log(x^ 
n) + a*b^2*n^2), x)
 
3.1.81.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1029 vs. \(2 (100) = 200\).

Time = 0.36 (sec) , antiderivative size = 1029, normalized size of antiderivative = 10.19 \[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^3/(a+b*log(c*x^n))^3,x, algorithm="giac")
 
output
-2*b^2*n^2*x^4*log(x)/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^ 
3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) - 1/2* 
b^2*n^2*x^4/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 
 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) - 2*b^2*n*x^4*lo 
g(c)/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a* 
b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) - 2*a*b*n*x^4/(b^5*n^5* 
log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) 
 + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) + 8*b^2*n^2*Ei(4*log(c)/n + 4*a/(b*n) 
 + 4*log(x))*e^(-4*a/(b*n))*log(x)^2/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c) 
*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2 
*b^3*n^3)*c^(4/n)) + 16*b^2*n*Ei(4*log(c)/n + 4*a/(b*n) + 4*log(x))*e^(-4* 
a/(b*n))*log(c)*log(x)/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5* 
n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3)*c^(4 
/n)) + 8*b^2*Ei(4*log(c)/n + 4*a/(b*n) + 4*log(x))*e^(-4*a/(b*n))*log(c)^2 
/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4 
*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3)*c^(4/n)) + 16*a*b*n*Ei(4*l 
og(c)/n + 4*a/(b*n) + 4*log(x))*e^(-4*a/(b*n))*log(x)/((b^5*n^5*log(x)^2 + 
 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4 
*n^3*log(c) + a^2*b^3*n^3)*c^(4/n)) + 16*a*b*Ei(4*log(c)/n + 4*a/(b*n) + 4 
*log(x))*e^(-4*a/(b*n))*log(c)/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*lo...
 
3.1.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {x^3}{{\left (a+b\,\ln \left (c\,x^n\right )\right )}^3} \,d x \]

input
int(x^3/(a + b*log(c*x^n))^3,x)
 
output
int(x^3/(a + b*log(c*x^n))^3, x)